

Briefly Introduce Myself

- Name: Chieng Hock Hung
- ■Chinese Name: 钱学宏
- Nick Name: Joshua or DAMAGE
- Ancestral Home: Fujian
- Nationality: Malaysia

- Home state: Sarawak (Borneo Island)
- •Hometown: Limbang(林梦)

Previous Academic Degree

Bachelor Degree (2009-2013)

Institute: Universiti Tun Hussein Onn Malaysia

Field of study: Information Technology (Multimedia)

Final year project: The development of a modern musical instruments application for Android platform

Master Degree (2013-2015)

Institute: Universiti Tun Hussein Onn Malaysia

Field of study: Information Technology (Application)

Topic: (I will show to you now....)

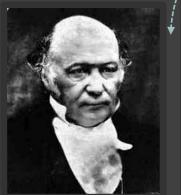
With Wisdon We Stolor

VIVA

PRESENTATION DENETIC STAPLIEED SINARU AUGORITIM (05554) n-CITES OF EN LOOP JE AAEL ING SALESIAAE

> Presenter: Chieng Hock Hung M.Sc. in Information Technology

Supervisor: Dr. Noorhaniza Binti Wahid Head of Department Department Multimedia UNIVERSITI TUN HUSSEIN ONN MALAYSIA



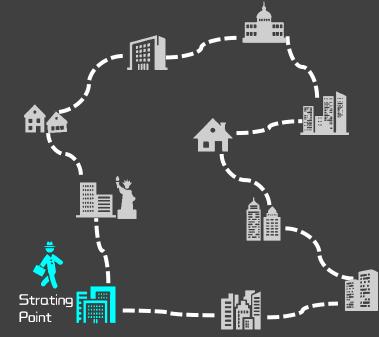
Introduction

Travelling Salesman Problem (T\$P)

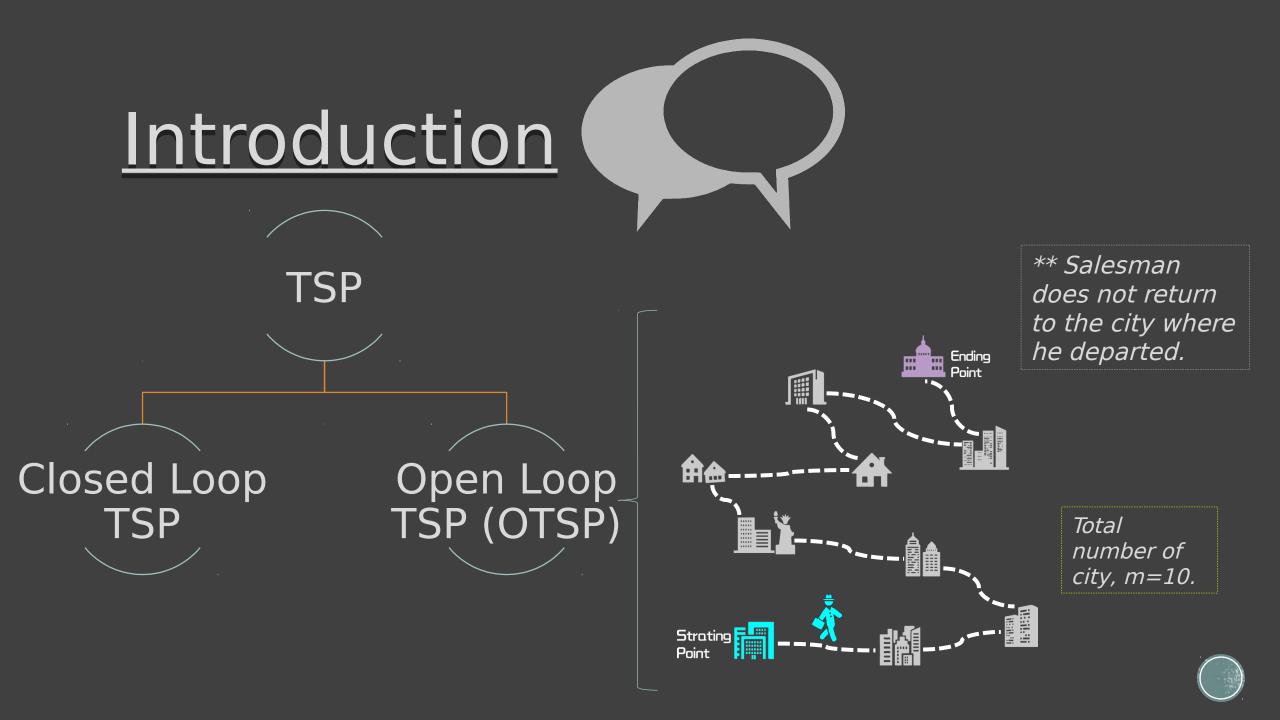
1800

S

W. R. Hamilton



P. Krikman



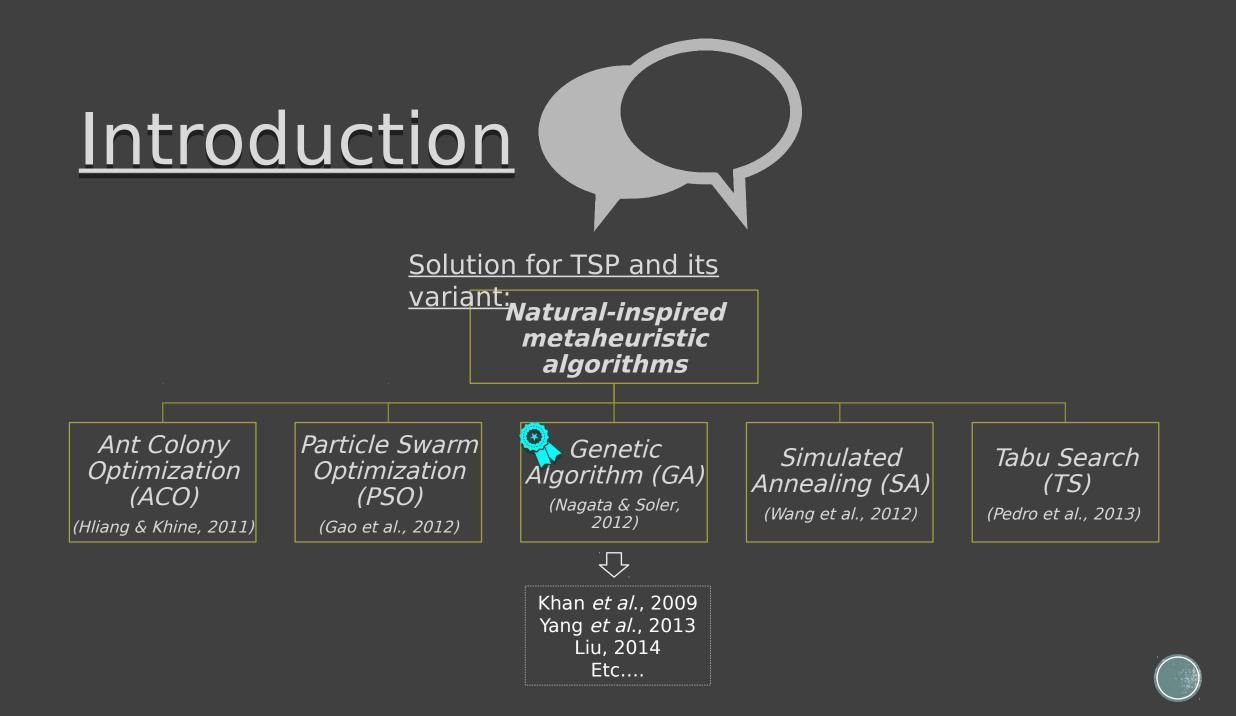
Total number of city, m=10. Definition:

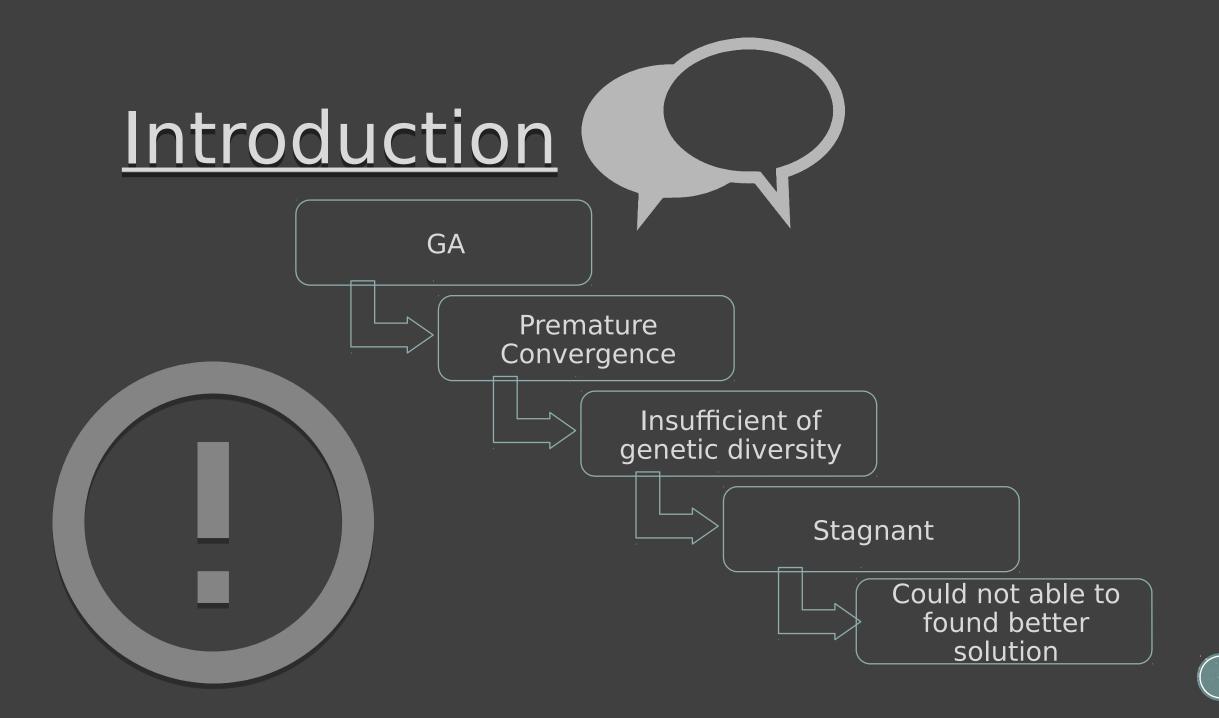
A salesman who must travel and visit each one of the given cities exactly once and return to the city he started with the total of the route which is shortest.

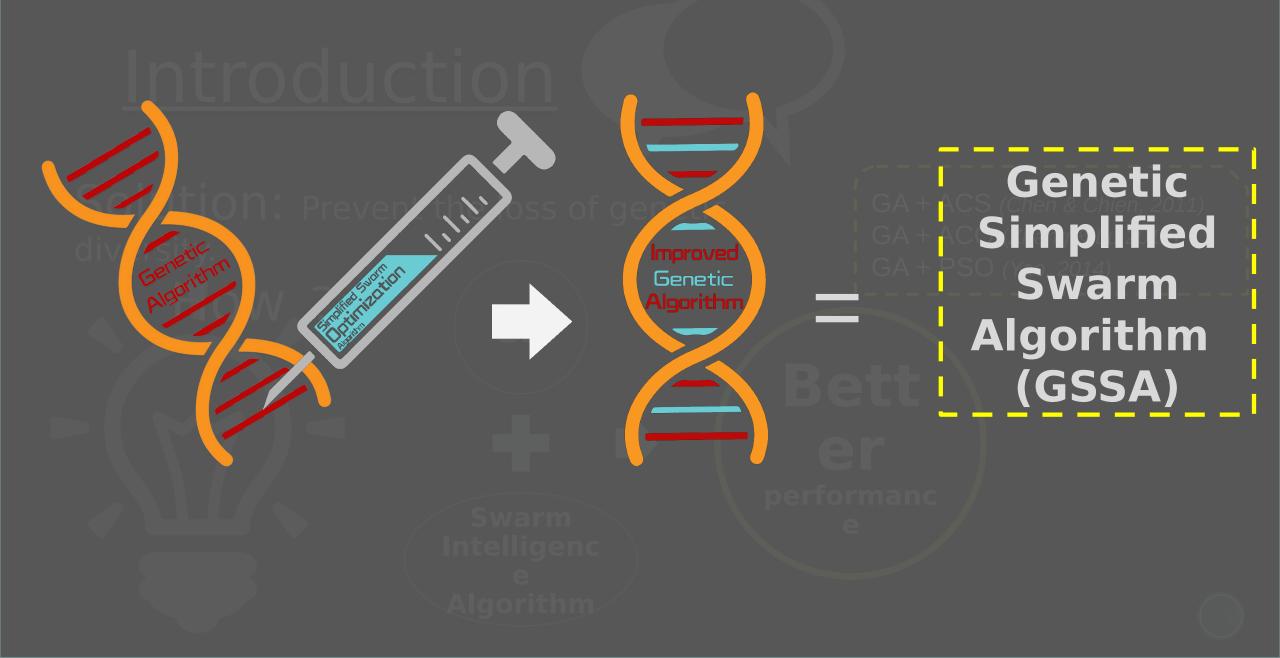
 In today real-life transportation scenarios, the problems are not exactly similar as what has been described in TSP & OTSP.

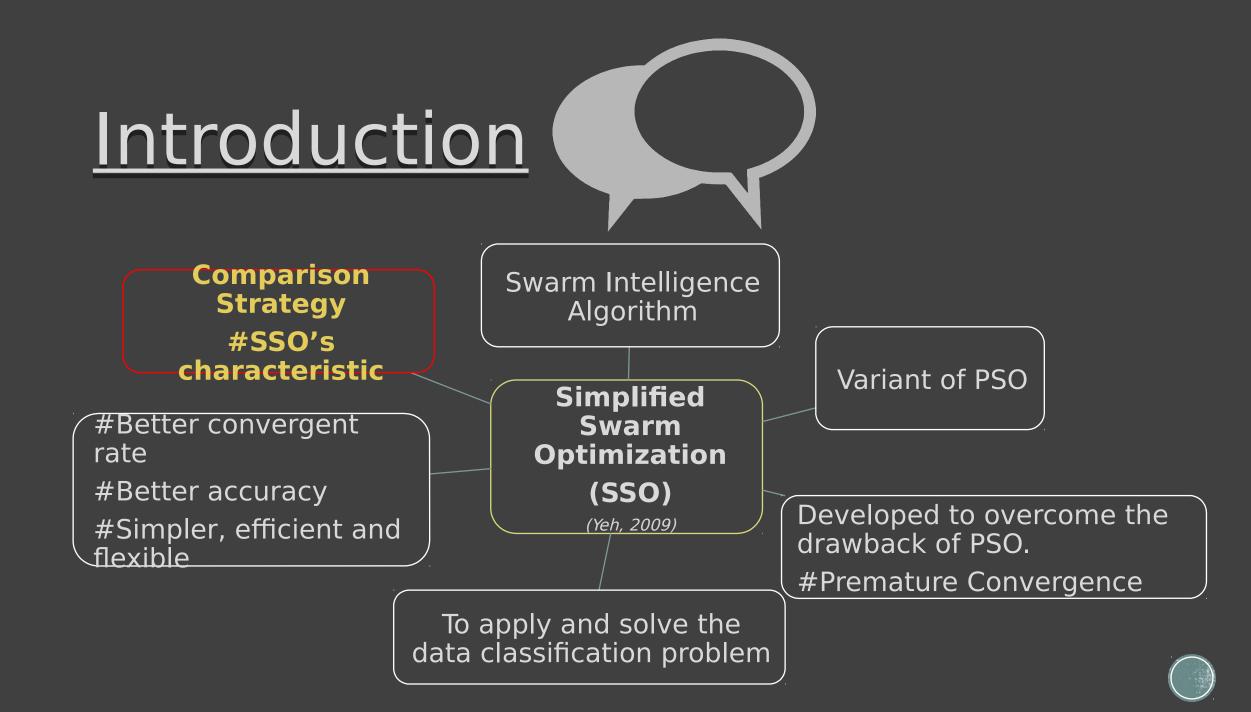
•In daily practical cases...

- There are vehicles may only travel from a starting point and end the journey in another destination.
- Unnecessary to visit all the cities (or nodes, locations).
- Yet they travel only to a certain number of "cities" with minimum total travelling distance.
- For example:
 - Logistics of merchandise delivery services Fuel saving, time saving & environment friendly.

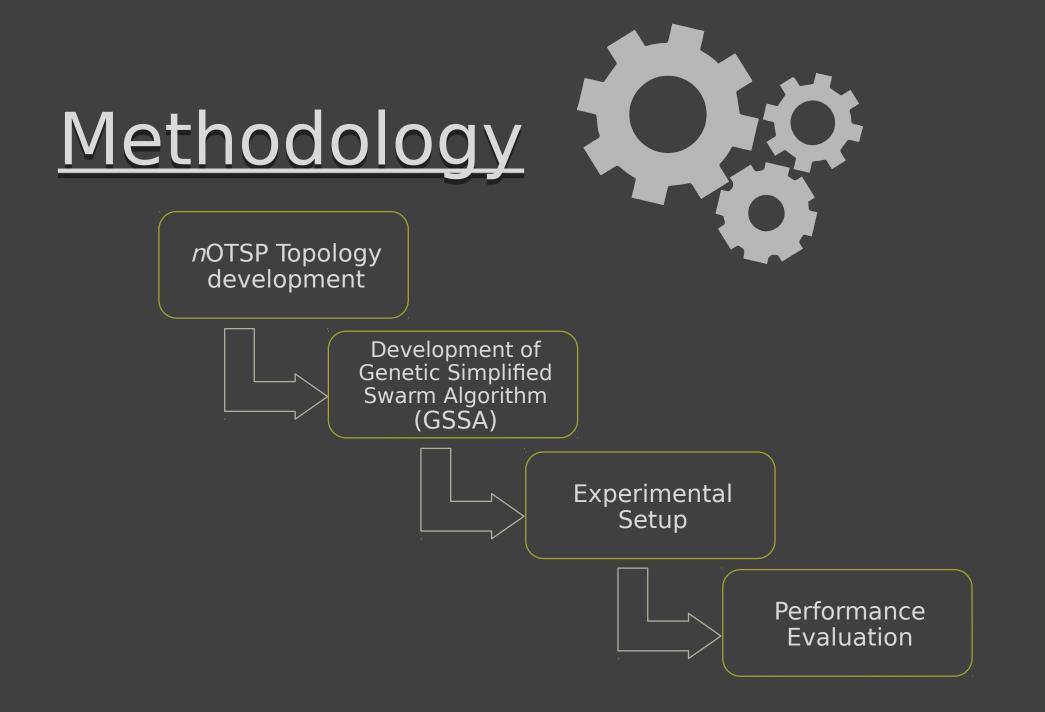



Emergency & evacuation transportation route planning (Short)


<u>nOTSP possible solutions</u> <u>(combinations)</u> $= \Re dssible solutions$ 2(m-n)!


**m=50

n	Possible solutions			
	n	Possible solutions		
1 ^	10	$1.86 imes 10^{16}$		
10	20	5.73×10^{31}		
T O	30 40	$ \begin{array}{c} 6.25 \times 10^{45} \\ 4.19 \times 10^{57} \end{array} $		
	n	Possible solutions		
20	10	1.86×10^{16}		
20	10 20	$1.86 imes 10^{16} \ 5.73 imes 10^{31}$		
20	10	1.86×10^{16}		
20	10 20 30	$\begin{array}{c} 1.86 \times 10^{16} \\ 5.73 \times 10^{31} \\ 6.25 \times 10^{45} \\ 4.19 \times 10^{57} \end{array}$		
	10 20 30 40	$\begin{array}{c} 1.86 \times 10^{16} \\ 5.73 \times 10^{31} \\ 6.25 \times 10^{45} \end{array}$		
	10 20 30 40 n			
20 30	10 20 30 40 n 10	$\begin{array}{c c} 1.86 \times 10^{16} \\ 5.73 \times 10^{31} \\ 6.25 \times 10^{45} \\ 4.19 \times 10^{57} \\ \hline \end{array}$		
	10 20 30 40 n 10 20			
30	10 20 30 40 n 10 20 30 40 n			
30	10 20 30 40 n 10 20 30 40 n 10	$\begin{array}{c} 1.86 \times 10^{16} \\ 5.73 \times 10^{31} \\ 6.25 \times 10^{45} \\ 4.19 \times 10^{57} \end{array} \\ \hline Possible solutions \\ 1.86 \times 10^{16} \\ 5.73 \times 10^{31} \\ 6.25 \times 10^{45} \\ 4.19 \times 10^{57} \end{array} \\ \hline Possible solutions \\ 1.86 \times 10^{16} \end{array}$		
30	10 20 30 40 n 10 20 30 40 n 10 20	$\begin{array}{c c} 1.86 \times 10^{16} \\ 5.73 \times 10^{31} \\ 6.25 \times 10^{45} \\ 4.19 \times 10^{57} \\ \hline \end{array} \\ \hline \begin{array}{c} \textbf{Possible solutions} \\ 1.86 \times 10^{16} \\ 5.73 \times 10^{31} \\ 6.25 \times 10^{45} \\ 4.19 \times 10^{57} \\ \hline \end{array} \\ \hline \begin{array}{c} \textbf{Possible solutions} \\ 1.86 \times 10^{16} \\ 5.73 \times 10^{31} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array}$		
	10 20 30 40 n 10 20 30 40 n 10	$\begin{array}{c} 1.86 \times 10^{16} \\ 5.73 \times 10^{31} \\ 6.25 \times 10^{45} \\ 4.19 \times 10^{57} \end{array} \\ \hline Possible solutions \\ 1.86 \times 10^{16} \\ 5.73 \times 10^{31} \\ 6.25 \times 10^{45} \\ 4.19 \times 10^{57} \end{array} \\ \hline Possible solutions \\ 1.86 \times 10^{16} \end{array}$		





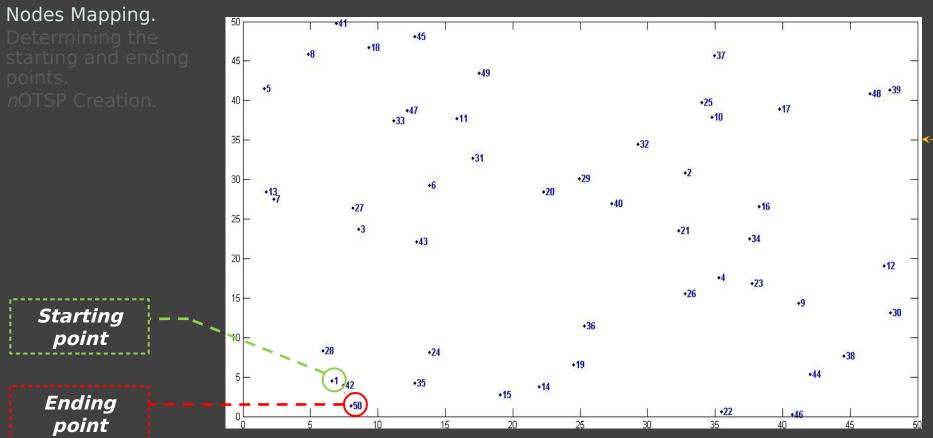
- 1. To propose a new extension of OTSP variant named *n*-Cities Open Loop Travelling Salesman Problem (*n*OTSP) based on transportation problem in today's reality.
- 2. To propose an improved technique of Genetic Algorithm (GA) with Simplified Swarm Optimization (SSO) algorithm's characteristic to prevent the loss of genetic diversity in the population.
- 3. To develop the propose technique in (2) for optimizing the *n*OTSP in term of finding the shortest path.
- 4. To evaluate the performance of the proposed technique with other GA variants in terms of shortest distance and population size.


*n*OTSP Topology development

• Nodes Generation.

Outcome:

		Node	Coordinate (x,y)
	Starting	1	6.5961 4.5380
	point	2	32.7739 30.8022
		3	8.5593 23.6644
Node $\mathfrak{A} rand(\mathfrak{m}, n)$ (m, n) <u>Parameter setting</u> a=50, m=50 and n=2		:	:
		:	:
		48	46.4632 40.8652
		49	17.4992 43.4347
	Ending	50	8.0033 1.3317
	point		



Methodology

nOTSP Topology development

- Nodes Mapping.

Cartesian Coordinate plane

*n*OTSP Topology development

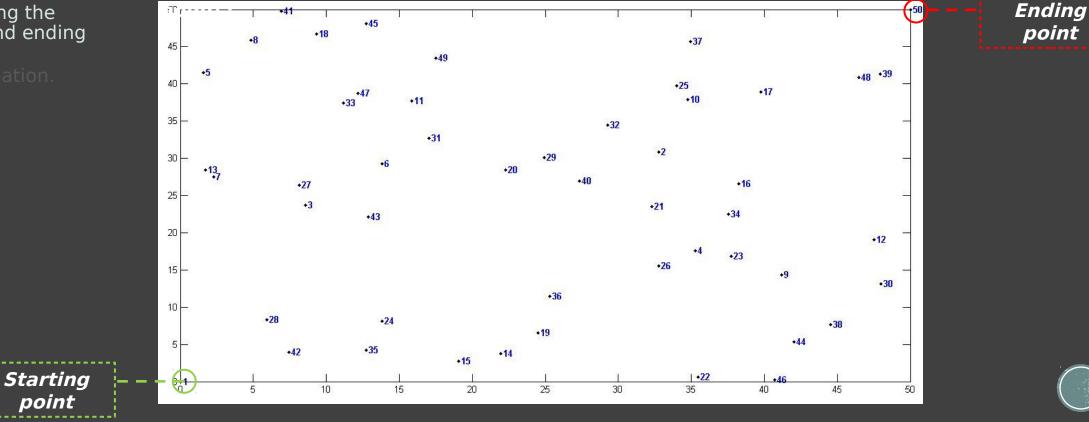
Nodes Generation.
 Nodes Mapping

Determi		
starting	and	ending
points		

.....

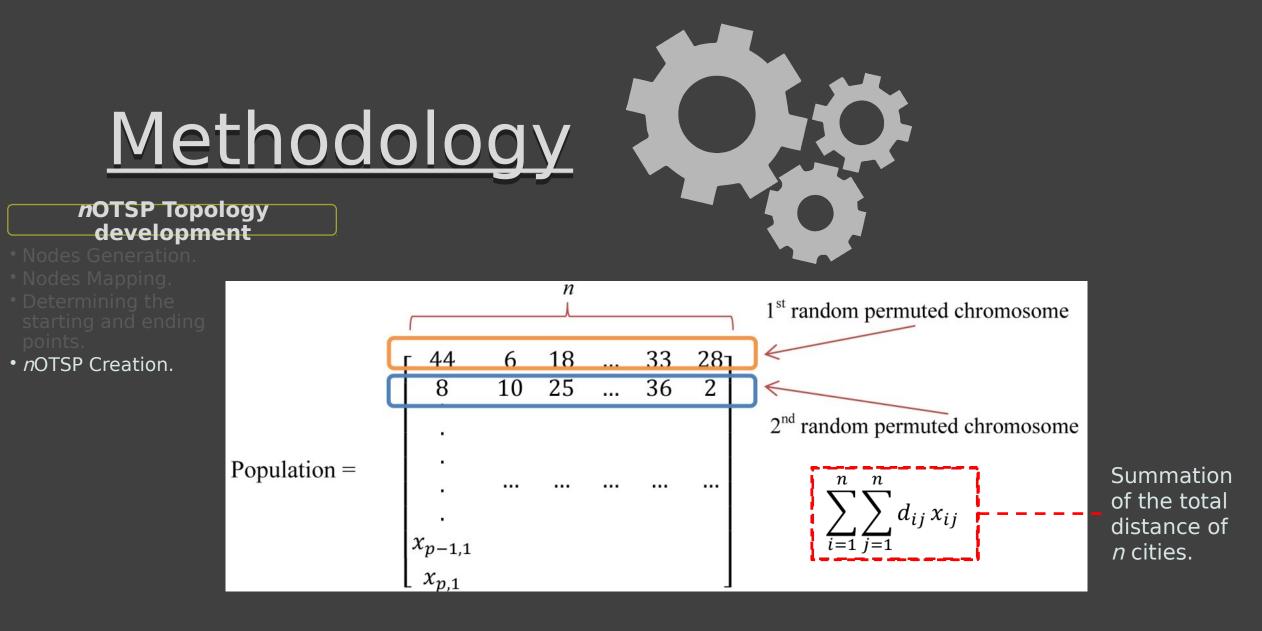
Starting point

	Before:				Before:				After:	
	Node	Coordinate (x,y)	$- \bot$		Node	Coordinate (x,y)				
	1	6.5961 4.5380			1	0.00 0.00				
	2	32.7739 30.8022			2	32.7739 30.8022				
	3	8.5593 23.6644			3	8.5593 23.6644				
	:	:			:	:				
	:	:			:	:				
	48	46.4632 40.8652			48	46.4632 40.8652				
	49	17.4992 43.4347			49	17.4992 43.4347				
	50	8.0033 1.3317				50.00 50.00				


Ending point

*n*OTSP Topology development

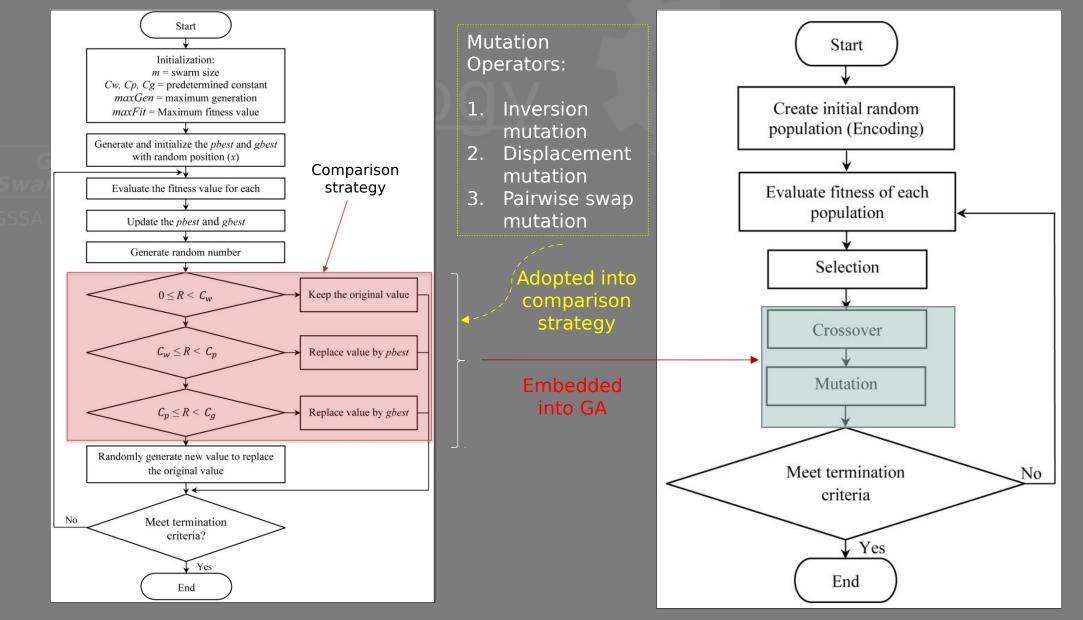
- Nodes Generation.
 Nodes Mapping
- Determining the starting and ending points
- *n*OTSP Creation.


*n*OTSP Topology development

- Nodes Generation.
- Nodes Mapping.
- Determining the starting and ending points.
- *n*OTSP Creation.

	City	1	2	3	4	••••	47	48	49	50	
	1	0	44.97	25.16	39.43		40.61	61.87	46.82	70.71	
	2	44.97	0	25.24	25.24		22.07	16.99	19.82	25.79	$(y_i)^2$
	3	25.16	25.24	0	27.42		15.50	41.62	21.69	49.10	У _ј)-
-	4	39.43	13.45	27.42	0		25.81	25.81	31.38	35.59	
						0					
	47	40.61	22.07	15.50	25.81		0	34.35	7.09	39.46	
	48	61.87	16.99	41.62	25.81		34.35	0	29.07	9.79	
	49	46.82	19.82	21.69	31.38		7.09	7.09	0	33.15	
	50	70.71	25.79	49.10	35.59		39.46	9.79	33.15	0	

Symmetric distancematrix



SSO's flowchart

GA's flowchart

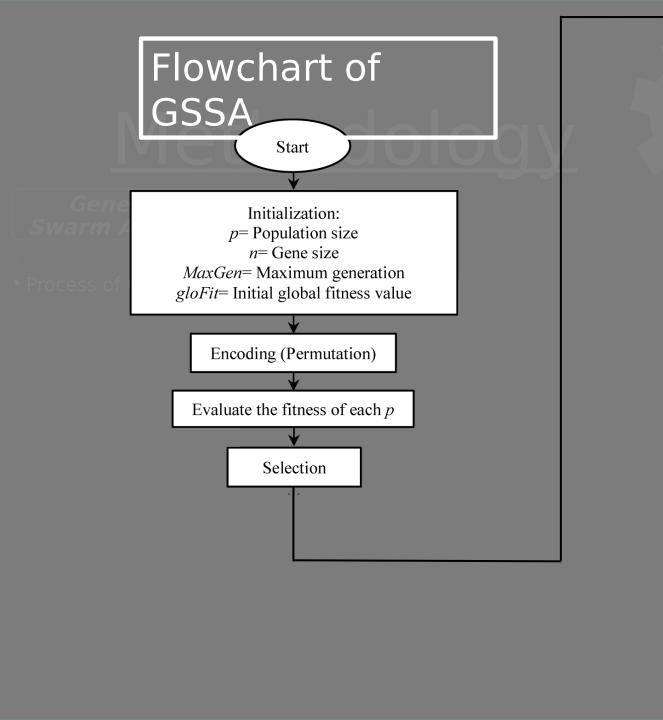
**comparison strategy is renamed to Solution Update Mechanism (SUM) after the modification

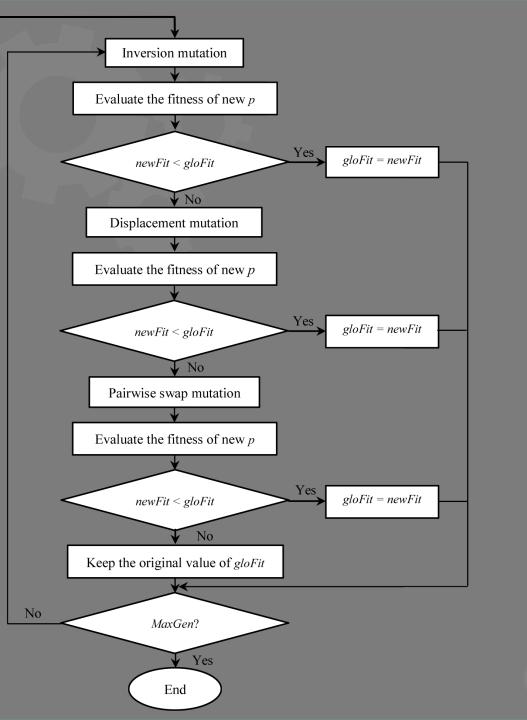
Genetic Simplified Swarm Algorithm (GSSA)

• GSSA development. • Process of GSSA.

Inversion mutation:

•	1 5 <mark>9</mark> 3 7 4 6 <mark>2</mark> 8 0
After mutation	1 5 <mark>2 6 4 7 3 9</mark> 8 0


Displacement mutation:


Before mutation	15 <mark>937462</mark> 80
After mutation	1 5 <mark>3 7 4 6 2 9</mark> 8 0

Pairwise Swap mutation:

5	1593746 <mark>2</mark> 80
After mutation	15 <mark>2</mark> 3746 <mark>9</mark> 80

Pre-processing results of determine MaxGen for <u>n=10, 20, 30 and 40</u>

Experimental Setup

n	Maximum	Average	MaxGen	
	Break	break		
	iteration	iteration		
10	27	18	30	
20	146	103	150	
30	248	218	250)
40	496	436	500	<u>30</u>

Experimental Setup

- Pre-processing:
 Determining the MaxGen.
- Parameter Setting and Data Collection.

n

m=5 0

Execute for 10 times in all the population p, where p=1000, 2000, 3000, 4000 and 5000.

 The results (optimal solution and average) of GSSA will be compared with the results obtained by GA without crossover operator (GA-XX) and GA with one-point crossover operator (GA-1X).

<u>Characteristics of the algorithms:</u>

Algorithms	Crossover Operator	Mutation Operator
GSSA	No	Three mutation
GA-XX	No	operators: 1. Inversion
GA-1X	Yes, single point crossover	 Displacement Pairwise Swap

 The research had also conducted an experiment to see the effects of the population size toward the algorithms.

<u>Analysis & Result</u>

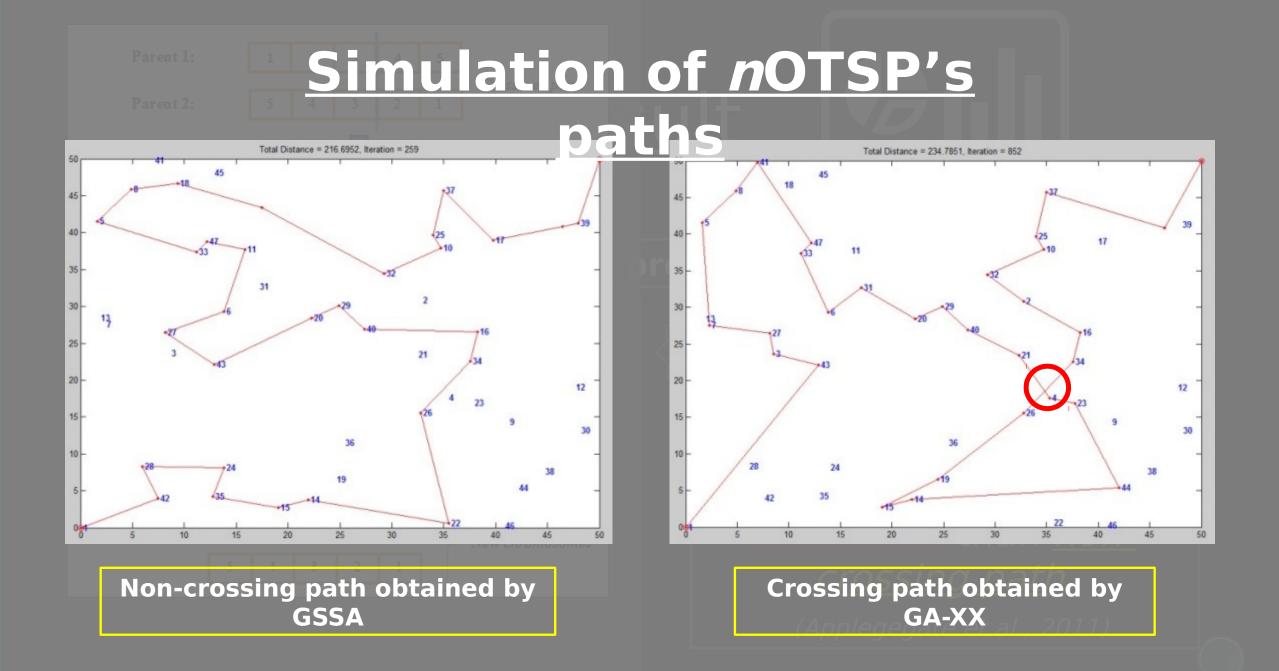
Shortest distance (optimal solution)

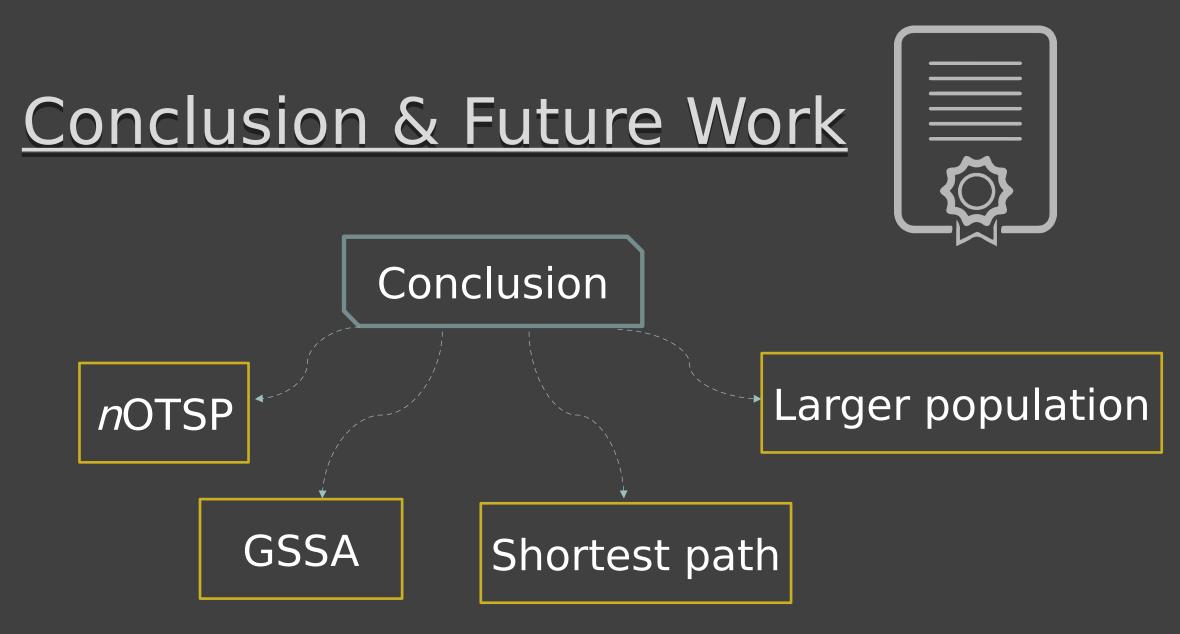
	~ /			Population, p		
n	Algorithm	1000	2000	3000	4000	5000
10	GSSA	98.003	88.511	95.289	87.922	91.0164
10	GA-XX	94.373	101.177	96.446	94.617	89.760
	GA-1X	130.389	113.874	124.686	115.113	122.958
20	GSSA	157.972	149.713	158.063	152.154	139.064
20	GA-XX	163.740	162.133	164.168	165.537	146.251
	GA-1X	292.819	299.943	281.290	287.963	291.253
30	GSSA	198.922	190.485	189.101	205.128	204.465
	GA-XX	213.169	198.643	202.315	207.311	207.633
	GA-1X	498.971	481.285	477.500	495.247	496.988
40	GSSA	243.425	235.712	228.921	236.649	239.535
40	GA-XX	251.667	239.178	249.184	249.995	251.859
	GA-1X	679.322	714.039	696.956	660.416	682.911

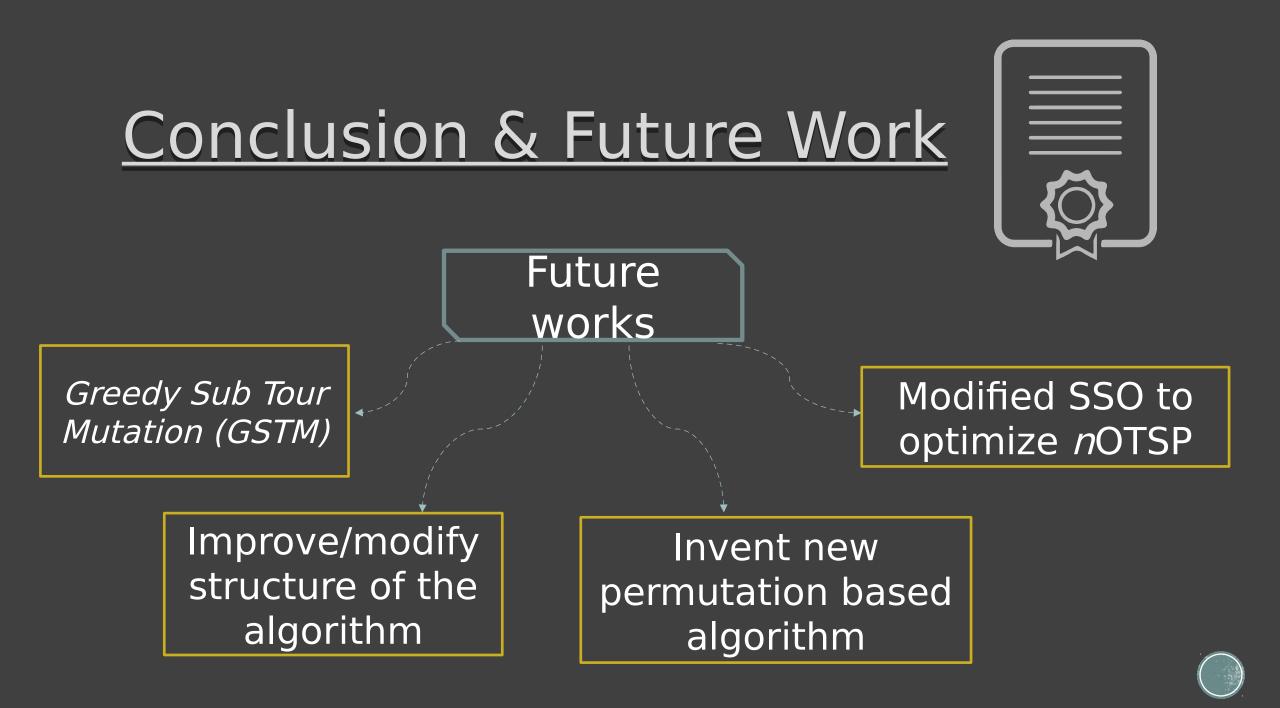
<u>Analysis & Result</u>

Average distance (average solution)

Solution,		Population, p					
n	Algorithm	1000	2000	3000	4000	5000	
10	GSSA	107.23	100.994	101.658	96.686	95.865	
	GA-XX	113.584	112.511	105.342	106.946	104.419	
	GA-1X	144.732	133.404	132.311	130.761	131.565	
20	GSSA	172.704	169.517	167.28	165.464	154.146	
	GA-XX	178.467	174.248	175.114	178.381	169.444	
	GA-1X	315.246	310.311	298.123	303.507	298.444	
30	GSSA	214.061	212.557	211.482	215.406	211.02	
	GA-XX	229.145	224.96	219.822	219.309	225.971	
	GA-1X	524.062	522.027	504.504	514.896	512.536	
40	GSSA	257.427	246.475	245.556	247.43	l246.636 I←	
	GA-XX	261.962	257.345	260.275	256.422	261.82	
	GA-1X	725.898	732.294	731.897	712.668	711.656	


Shorte st averag e distanc e




<u>Ana</u>

			3000 ≤ p ≤					
		Algo	rithm: 590	0				
n			Population, p					
	1000	2000	3000	4000	5000			
10	107.23	100.994	101.659	96.686	95.865			
20	172.704	169.517	167.28	165.464	154.146			
30	214.061	212.557	211.482	215.406	211.02			
40	257.427	246.475	245.557	247.43	246.636			
Algo ^r ithm: GA-XX								
n	Population, p							
	1000	2000	3000	4000	5000			
10	113.584	112.511	105.342	106.946	104.42			
20	178.467	174.248	175.115	178.381	169.444			
30	229.145	224.960	219.822	219.31	225.971			
40	261.962	257.345	260.275	256.423	261.820			
		Algo	rithm: GA-1X					
n	Population, p							
	1000	2000	3000	4000	5000			
10	144.732	133.404	132.311	130.761	131.565			
20	315.246	310.311	298.123	303.507	298.444			
30	524.062	522.027	504.504	514.896	512.5367			
40	725.898	732.294	731.897	712.668	711.657			

algorithms

Publications

- Chieng, H. H., and Wahid, N. (2014). A Performance Comparison of Genetic Algorithm's Mutation Operators in n-Cities Open Loop Travelling Salesman Problem. Recent Advances on Soft Computing and Data Mining (SCDM) pp. 89-97. Springer International Publishing. (Indexed by ISI, DBLP, El-Compendex, Scopus).
- 2. Chieng, H. H., and Wahid, N. (2015). *An Improved GA-Based Algorithm for Travelling Salesman Problem*. International Journal of Advancements in Computing Technology (IJACT), (ISSN: 2005-8039). Vol. 8, No. 3.
- 3. Chieng, H. H., and Wahid, N. (2016). *Genetic Simplified Swarm Optimization for n-Cities Open Loop travelling salesman problem*. **(Submitting)**
- 4. Chieng, H. H., and Wahid, N. (2016). *Animal-Inspired Metaheuristic Algorithms' Directory*. (Progressing...)

for your attention

